Selective Isomerization of Glycidates and Their Analogues with Triphenylsilyl Perchlorate or Electrogenerated Acid Tsutomu INOKUCHI, Masahiko KUSUMOTO, Sigeaki MATSUMOTO, Hiroyuki OKADA, and Sigeru TORII* Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima-Naka 3, Okayama 700 Isomerization of glycidic esters and nitriles to the corresponding 2-hydroxy-3-alkenoates and their nitrile derivatives occurred on treatment with triphenylsilyl perchlorate or electrogenerated acid (EG acid). The cyanohydrin moiety of the nitriles 4 was transformed to a formyl group, giving the corresponding enals on treatment with weak base. Acid-catalyzed isomerization of glycidic esters is useful in obtaining 2-hydroxy-3-alkenoates, versatile building blocks for the synthesis of bioactive compounds¹⁾ and liquid crystals.²⁾ A variety of conventional Brønsted acids,³⁾ Lewis acids (stoichiometric use),⁴⁾ and transition metal (Pd, Rh)-olefin complexes⁵⁾ are proposed for this purpose. However, some of them require the operation at high temperature⁵⁾ which limits feasibility in their applications and induces side-reactions such as dehydration and formation of 2-oxoalkanoates. We describe an improved procedure by using triphenylsilyl perchlorate (Ph₃SiClO₄), prepared from chlorotriphenylsilane (Ph₃SiCl) and silver perchlorate,⁶⁾ or electrogenerated acid (EG acid) as an acid catalyst.⁷⁾ Treatment of **1a** with 0.1 equivalent of Ph₃SiClO₄ at -78 to -30 °C in dichloromethane produced the corresponding 2-hydroxy-3-alkenoate **2a** in 95% yield (Table 1, entry 1). The electrolysis of **1a** in a CH₂Cl₂-LiClO₄-Bu₄NClO₄-(Pt) system⁷) at -78 to -30 °C for 0.1 F/mol of electricity afforded the same hydroxy ester **2a** in 90% yield (entry 2). Furthermore, the electrogenerated trityl perchlorate⁸) (Ph₃CClO₄) from phenylthiotriphenylmethane was found to be effective for this isomerization, giving **2a** in 92% yield. In all cases, the formation of the corresponding 2-oxoalkanoate was not observed. As shown in Table 1, 2-hydroxy-3-alkenoates 2 are prepared from good to excellent yields by isomerization of the glycidic esters 1.9) Of interest to note is that the treatment of a 39:61 threo/erythro mixture of 1f with Ph₃SiClO₄ gave the corresponding E-isomer of 2-hydroxy-3-alkenoate (E-2f), predominantly. The ratio of E-2f, Z-2f, and exo-2f was determined to be 94:4:2 by GC analyses. We assume that this isomerization proceeds through a cationic intermediate 6 which may be stabilized by participation of perchlorate ion. The elimination of Ph₃SiClO₄ and deprotonation from 6 would lead exclusively to one of the olefinic alcohols E-2f, Z-2f, and exo-2f. As shown in Scheme 1, the high E-selectivity can be ascribed to a transition state A, a favorable one over B because of the gauche interaction between R and the (triphenyl)siloxylated methyl group. 11) Me $$CO_2Me$$ O H threo-1f Ph₃SiClO₄ 90% Z-2f CO_2Me OH erythro-1f threo/erythro = 39/61 CO₂Me OSiPh₃ R CO₂Me OSiPh₃ R CO₂Me OSiPh₃ R Scheme 1. Furthermore, isomerization of the glycidic nitrile 3a was achieved on treatment with the EG acid or Ph_3SiClO_4 to the corresponding cyanohydrin 4a, smoothly. The cyanohydrin 4a was converted to the α,β -unsaturated aldehyde 5a on treatment with aqueous potassium carbonate in methanol at 5—10 °C. Since the epoxy nitriles are easily available from the corresponding ketones, an acid-catalyzed isomerization and base-catalyzed decyanation sequence would provide a facile route to useful α,β -enals. | Entry | Substrate | Method | Time/h ^{b)} | Product | Yield/% ^{c)} | |-------|------------|--------|----------------------|------------|-----------------------| | 1 | OMe
1 a | Α | 1.5 | OH OMe 2 a | 95 | | 2 | 1 a | В | 1.5 | 2a | 90 | | 5 | t-Bu OMe | Α | 2 | OH OMe 2 b | 95 | | 6 | 1 b | В | 2 | 2b | 90 | | 7 | OMe
1c | Α | 2 | OH OMe 2 c | 95 | | 8 | 1 c | В | 2 | 2c | 94 | | 9 | OMe
1 d | Α | 2 | OH OMe 2d | 96 | | 10 | 1 d | В | 2 | 2 d | 95 | | 11 | OMe
1 e | Α | 4 | OH OMe 2 e | 78 | a) Unless otherwise noted, the substrate (1 mmol) was treated with a solution of Ph_3SiClO_4 (0.5 M) in CH_2Cl_2 (3 ml) at -78 to -30 °C (Method A). b) Method B: Electrolysis in a CH_2Cl_2 -LiClO₄-Bu₄NClO₄-(Pt) system. c) Based on isolated products. In this study, triphenylsilyl perchlorate (Ph_3SiClO_4) dissolved in CH_2Cl_2 and stored in cool is shown to be an alternative to the EG acid as well as trityl perchlorate generated in electrolysis media.⁸) The present work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (Advanced Molecular Conversions, No. 01607001) from the Ministry of Education, Science and Culture of Japan. We are grateful to the SC-NMR laboratory of Okayama University for experiments with Varian VXR-500 and -200 instruments. ## References - 1) D. T. Downing, Rev. Pure Appl. Chem., 11, 196 (1961). - 2) D. M. Walba, K. F. Eidman, and R. C. Haltiwanger, J. Org. Chem., 54, 4939 (1989). - 3) K. Kogure, N. Sueda, S. Himoto, Y. Yoshino, and K. Nakagawa, Ger. Offen., 2533387, 1976; *Chem. Abstr.*, 84, 150368z (1976). - 4) K. Kogure, N. Sueda, S. Himoto, Y. Yoshino, and K. Nakagawa, Jpn. Kokai, 77, 95628, 1977; *Chem. Abstr.*, 88, 62163f (1978). - 5) K. Hirai, T. Fuchigami, H. Hirose, and I. Ojima, Eur. Pat., Appl. EP153692, 1985; *Chem. Abstr.*, **104**, 70677r (1986). - 6) G. K. S. Prakash, S. Keyaniyan, R. Aniszfeld, L. Heiliger, G. A. Olah, R. C. Stevens, H.-K. Choi, and R. Bau, J. Am. Chem. Soc., 109, 5123 (1987). - 7) S. Torii, T. Inokuchi, S. Takagishi, H. Horike, H. Kuroda, and K. Uneyama, Bull. Chem. Soc. Jpn., 60, 2173 (1987). - 8) T. Inokuchi, Y. Kurokawa, M. Kusumoto, S. Tanigawa, S. Takagishi, and S. Torii, *Bull. Chem. Soc. Jpn.*, 62, 3739 (1989). - 9) 2-Hydroxy-3-phenyl-3-butenoate (2e) derived from the glycidic ester 1e is useful as a precursor of bioactive β-methylenephenylalanine¹²⁾ and phenylpyruvic ester.⁵⁾ - 10) The trimethylsilyl ethers from a mixture of E-2f, Z-2f, and exo-2f were analyzed on a "Quadrex" Bond-Fused Silica capillary column (Methyl Silicone 20M: 0.25 µm film thickness, 25 m x 0.25 mm I.D.) by a Yanaco G6800. Programmed from 100 °C to 270 °C with gradient at the rate of 10 °C/min after 10 min period at the starting. Retention times (min) of E-2f, Z-2f, and exo-2f: 15.4, 14.7, and 14.9 min. - 11) Similarly, *E*-selectivity was observed in the rearrangement of unsymmetrical glycidic nitrile **3b**. Purity of the corresponding α,β -enal **5b** (retention time, 15.4 min) was determined as 94% by GC analysis. - 12) R. V. J. Chari and J. Wemple, Tetrahedron Lett., 20, 111 (1979). - 13) All reactions were carried out under an argon atmosphere and a typical procedure is as follows: To a solution of **1a** (172 mg, 1 mmol) in CH₂Cl₂ (3 ml) was added a 0.2M Ph₃SiClO₄ in CH₂Cl₂ (0.5 ml) at -78 °C. The mixture was stirred for 1.5 h at -78—30 °C for 1.5 h and quenched with Et₃N (3 drops). Evaporation of the volatiles and purification of the residue by column chromatography (SiO₂, hexane-AcOEt = 5:1) gave 163 mg (95%) of **2a**: IR (neat) 3440 (OH), 1740 (C=O) cm⁻¹; ¹H NMR (500 MHz) δ 1.50-1.68 (m, 4H, CH₂), 1.72-1.79 (m, 1H, CH₂), 3.06 (brs, 1H, OH), 3.77 (s, 3H, OCH₃), 5.80 (m, 1H, HC=C); ¹³C NMR (126 MHz) δ 22.0, 22.2, 23.6, 25.0, 52.7, 75.3, 127.5, 134.8, 174.4. (Received August 5, 1991)